Compact all-optical precision-tunable narrowband hard Compton X-ray source – Scientific Reports

  • Röntgen, W. Über eine neue Art von Strahlen: vorläufige Mitteilung (Sitzungsber. Phys. Med, Gesell, 1895).

  • Thomlinson, W., Elleaume, H., Porra, L. & Suortti, P. K-edge subtraction synchrotron x-ray imaging in bio-medical research. Phys. Med. 49, 58–76. https://doi.org/10.1016/j.ejmp.2018.04.389 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cullum, I. D., Ell, P. J. & Ryder, J. P. X-ray dual-photon absorptiometry: A new method for the measurement of bone density. Br. J. Radiol. 62, 587–592. https://doi.org/10.1259/0007-1285-62-739-587 (1989).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Boisseau, P. & Grodzins, L. Fluorescence tomography using synchrotron radiation at the NSLS. Hyperfine Interact. 33, 283–292. https://doi.org/10.1007/BF02394116 (1987).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Grüner, F. et al. Localising functionalised gold-nanoparticles in murine spinal cords by X-ray fluorescence imaging and background-reduction through spatial filtering for human-sized objects. Sci. Rep. 8, 16561. https://doi.org/10.1038/s41598-018-34925-3 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Slatkin, D. N., Spanne, P., Dilmanian, F. A. & Sandborg, M. Microbeam radiation therapy. Med. Phys. 19, 1395–1400. https://doi.org/10.1118/1.596771 (1992).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Grotzer, M., Schültke, E., Bräuer-Krisch, E. & Laissue, J. Microbeam radiation therapy: Clinical perspectives. Phys. Medica 31, 564–567. https://doi.org/10.1016/j.ejmp.2015.02.011 (2015).

    CAS 
    Article 

    Google Scholar 

  • Jacquet, M. & Suortti, P. Radiation therapy at compact compton sources. Phys. Medica 31, 596–600. https://doi.org/10.1016/j.ejmp.2015.02.010 (2015).

    Article 

    Google Scholar 

  • Simiele, E. A. et al. Precision radiotherapy using monochromatic inverse Compton x-ray sources. Med. Phys. 48, 366–375. https://doi.org/10.1002/mp.14552 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chapman, H. N. et al. Femtosecond X-ray protein nanocrystallography. Nature 470, 73–78. https://doi.org/10.1038/nature09750 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tenboer, J. et al. Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein. Science 346, 1242–1246. https://doi.org/10.1126/science.1259357 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meents, A. et al. Pink-beam serial crystallography. Nat. Comm. 8, 1281. https://doi.org/10.1038/s41467-017-01417-3 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Wiedorn, M. O. et al. Megahertz serial crystallography. Nat. Comms 9, 4025. https://doi.org/10.1038/s41467-018-06156-7 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Riederer, S. J. & Mistretta, C. A. Selective iodine imaging using k-edge energies in computerized x-ray tomography. Med. Phys. 4, 474–481. https://doi.org/10.1118/1.594357 (1977).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Manohar, N., Reynoso, F. J., Diagaradjane, P., Krishnan, S. & Cho, S. H. Quantitative imaging of gold nanoparticle distribution in a tumor-bearing mouse using benchtop x-ray fluorescence computed tomography. Sci. Rep. 6, 22079. https://doi.org/10.1038/srep22079 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sarnelli, A., Elleaume, H., Taibi, A., Gambaccini, M. & Bravin, A. K-edge digital subtraction imaging with dichromatic x-ray sources: SNR and dose studies. Phys. Med. Biol. 51, 4311–4328. https://doi.org/10.1088/0031-9155/51/17/012 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wood, J. C. et al. Ultrafast Imaging of Laser Driven Shock Waves using Betatron X-rays from a Laser Wakefield Accelerator. Sci. Rep. 8, 11010. https://doi.org/10.1038/s41598-018-29347-0 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kneissl, U., Pitz, H. & Zilges, A. Investigation of nuclear structure by resonance fluorescence scattering. Prog. Part. Nucl. Phys. 37, 349–433. https://doi.org/10.1016/0146-6410(96)00055-5 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Johnson, M. S. et al. Using quasi-monoenergetic photon sources to probe photo-fission resonances. AIP Conf. Proc. 1336, 590–593. https://doi.org/10.1063/1.3586171 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Ride, S. K., Esarey, E. & Baine, M. Thomson scattering of intense lasers from electron beams at arbitrary interaction angles. Phys. Rev. E 52, 5425–5442. https://doi.org/10.1103/PhysRevE.52.5425 (1995).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Rykovanov, S. G. et al. Quasi-monoenergetic femtosecond photon sources from Thomson Scattering using laser plasma accelerators and plasma channels. J. Phys. B 47, 234013. https://doi.org/10.1088/0953-4075/47/23/234013 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Krämer, J. M. et al. Making spectral shape measurements in inverse Compton scattering a tool for advanced diagnostic applications. Sci. Rep. 8, 1398. https://doi.org/10.1038/s41598-018-19546-0 (2018).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Albert, F. et al. Characterization and applications of a tunable, laser-based, mev-class compton-scattering (gamma)-ray source. Phys. Rev. ST Accel. Beams 13, 070704. https://doi.org/10.1103/PhysRevSTAB.13.070704 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Jochmann, A. et al. High resolution energy-angle correlation measurement of hard x rays from laser-thomson backscattering. Phys. Rev. Lett. 111, 114803. https://doi.org/10.1103/PhysRevLett.111.114803 (2013).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Powers, N. D. et al. Quasi-monoenergetic and tunable X-rays from a laser-driven Compton light source. Nat. Phot. 8, 28–31. https://doi.org/10.1038/nphoton.2013.314 (2013).

    CAS 
    Article 

    Google Scholar 

  • Khrennikov, K. et al. Tunable All-Optical Quasimonochromatic Thomson X-Ray Source in the Nonlinear Regime. Phys. Rev. Lett. 114, 195003. https://doi.org/10.1103/PhysRevLett.114.195003 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Golovin, G. et al. Intrinsic beam emittance of laser-accelerated electrons measured by x-ray spectroscopic imaging. Sci. Rep. 6, 24622. https://doi.org/10.1038/srep24622 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, C. et al. Generation of 9 mev (gamma)-rays by all-laser-driven compton scattering with second-harmonic laser light. Opt. Lett. 39, 4132–4135. https://doi.org/10.1364/OL.39.004132 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wang, W. T. et al. High-brightness high-energy electron beams from a laser wakefield accelerator via energy chirp control. Phys. Rev. Lett. 117, 124801. https://doi.org/10.1103/PhysRevLett.117.124801 (2016).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kirchen, M. et al. Optimal beam loading in a laser-plasma accelerator. Phys. Rev. Lett. 126, 174801. https://doi.org/10.1103/PhysRevLett.126.174801 (2021).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • van Tilborg, J. et al. Active plasma lensing for relativistic laser-plasma-accelerated electron beams. Phys. Rev. Lett. 115, 184802. https://doi.org/10.1103/PhysRevLett.115.184802 (2015).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lindstrøm, C. A. et al. Emittance preservation in an aberration-free active plasma lens. Phys. Rev. Lett. 121, 194801. https://doi.org/10.1103/PhysRevLett.121.194801 (2018).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Röckemann, J.-H. et al. Direct measurement of focusing fields in active plasma lenses. Phy. Rev. AB 21, 122801. https://doi.org/10.1103/PhysRevAccelBeams.21.122801 (2018).

    Article 

    Google Scholar 

  • Fuchs, M. et al. Laser-driven soft-x-ray undulator source. Nat. Phys. 5, 826–829. https://doi.org/10.1038/nphys1404 (2009).

    CAS 
    Article 

    Google Scholar 

  • Gilljohann, M. et al. Direct observation of plasma waves and dynamics induced by laser-accelerated electron beams. Phys. Rev. X 9, 011046. https://doi.org/10.1103/PhysRevX.9.011046 (2019).

    CAS 
    Article 

    Google Scholar 

  • Attwood, D. & Sakdinawat, A. X-rays and extreme ultraviolet radiation, 192–195 (Cambridge University Press, 2016).

  • Brümmer, T., Debus, A., Pausch, R., Osterhoff, J. & Grüner, F. Thomson source optimization and dedicated design study for a compact laser-driven source for medical x-ray fluorescence imaging. Phys. Rev. Accelerators Beams 23, 31601. https://doi.org/10.1103/PhysRevAccelBeams.23.031601 (2020).

    ADS 
    Article 

    Google Scholar 

  • Hemberg, O., Otendal, M. & Hertz, H. M. Liquid-metal-jet anode electron-impact x-ray source. Appl. Phys. Lett. 83, 1483–1485. https://doi.org/10.1063/1.1602157 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Hornberger, B., Kasahara, J., Ruth, R., Loewen, R. & Khaydarov, J. Inverse compton scattering X-ray source for research, industry and medical applications. In Bleiner, D. (ed.) International Conference on X-Ray Lasers 2020, vol. 1188609, 16, https://doi.org/10.1117/12.2591977 (SPIE, 2021).

  • ESRF-EBS beam line list. https://www.esrf.eu/home/UsersAndScience/Accelerators/ebs—extremely-brilliant-source/ebs-parameters.html.

  • APS beam line list. https://www.aps.anl.gov/Beamlines/Directory.

  • SPRING-8 beam line list. http://www.spring8.or.jp/en/about_us/whats_sp8/facilities/bl/list/.

  • Seipt, D., Rykovanov, S. G., Surzhykov, A. & Fritzsche, S. Narrowband inverse Compton scattering x-ray sources at high laser intensities. Phys. Rev. A 91, 033402. https://doi.org/10.1103/PhysRevA.91.033402 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Tümmler, J., Jung, R., Stiel, H., Nickles, P. V. & Sandner, W. High-repetition-rate chirped-pulse-amplification thin-disk laser system with joule-level pulse energy. Opt. Lett. 34, 1378–1380. https://doi.org/10.1364/OL.34.001378 (2009).

    ADS 
    Article 
    PubMed 

    Google Scholar 

  • Nubbemeyer, T. et al. 1 kw, 200 mj picosecond thin-disk laser system. Opt. Lett. 42, 1381–1384. https://doi.org/10.1364/OL.42.001381 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Albert, F. et al. 2020 roadmap on plasma accelerators. New J. Phys. 23, 031101. https://doi.org/10.1088/1367-2630/abcc62 (2021).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Courant, E. D. & Snyder, H. S. Theory of the Alternating-Gradient Synchrotron. Ann. Phys. 3, 1–48 (1958).

    ADS 
    Article 

    Google Scholar 

  • Salvat, F., Fernández-Varea, J. M. & Sempau, J. Penelope-2008: A code system for monte carlo simulation of electron and photon transport. In The Workshop Proceedings (2008).

  • https://www.excillum.com/products/metaljet/metaljet-e1/. Accessed: 2022-07-22.

  • #Compact #alloptical #precisiontunable #narrowband #hard #Compton #Xray #source #Scientific #Reports

    Leave a Reply

    Your email address will not be published.

    Adblock Detected

    من فضلك لاستخدام خدمات الموقع قم بإيقاف مانع الاعلانات